Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation.
نویسندگان
چکیده
Three type 2C Ser/Thr phosphatases (PTCs) are negative regulators of the yeast Saccharomyces cerevisiae high-osmolarity glycerol mitogen-activated protein kinase (MAPK) pathway. Ptc2 and Ptc3 are 75% identical to each other and differ from Ptc1 in having a noncatalytic domain. Previously, we showed that Ptc1 inactivates the pathway by dephosphorylating the Hog1 MAPK; Ptc1 maintains low basal Hog1 activity and dephosphorylates Hog1 during adaptation. Here, we examined the function of Ptc2 and Ptc3. First, deletion of PTC2 and/or PTC3 together with PTP2, encoding the protein tyrosine phosphatase that inactivates Hog1, produced a strong growth defect at 37 degrees C that was dependent on HOG1, providing further evidence that PTC2 and PTC3 are negative regulators. Second, overexpression of PTC2 inhibited Hog1 activation but did not affect Hog1-Tyr phosphorylation, suggesting that Ptc2 inactivates the pathway by dephosphorylating the Hog1 activation loop phosphothreonine (pThr) residue. Indeed, in vitro studies confirmed that Ptc2 was specific for Hog1-pThr. Third, deletion of both PTC2 and PTC3 led to greater Hog1 activation upon osmotic stress than was observed in wild-type strains, although no obvious change in Hog1 inactivation during adaptation was seen. These results indicate that Ptc2 and Ptc3 differ from Ptc1 in that they limit maximal Hog1 activity. The function of the Ptc2 noncatalytic domain was also examined. Deletion of this domain decreased V(max) by 1.6-fold and increased K(m) by 2-fold. Thus Ptc2 requires an additional amino acid sequence beyond the catalytic domain defined for PTCs for full activity.
منابع مشابه
Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases.
Activating phosphorylation of cyclin-dependent protein kinases (CDKs) is necessary for their kinase activity and cell cycle progression. This phosphorylation is carried out by the Cdk-activating kinase (CAK); in contrast, little is known about the corresponding protein phosphatase. We show that type 2C protein phosphatases (PP2Cs) are responsible for this dephosphorylation of Cdc28p, the major ...
متن کاملDephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons.
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr=32000) is highly expressed in striatonigral neurons in which its phosphorylation is regulated by several neurotransmitters including dopamine and glutamate. DARPP-32 becomes a potent inhibitor of protein phosphatase 1 when it is phosphorylated on Thr-34 by cAMP- or cGMP-dependent protein kinases. DARPP-32 is also phosphorylated on Ser-13...
متن کاملRck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast.
Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. T...
متن کاملCTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity.
UNLABELLED Protein phosphorylation has become increasingly recognized for its role in regulating bacterial physiology and virulence. Chlamydia spp. encode two validated Hanks'-type Ser/Thr protein kinases, which typically function with cognate protein phosphatases and appear capable of global protein phosphorylation. Consequently, we sought to identify a Ser/Thr protein phosphatase partner for ...
متن کاملProtein phosphatases pph3, ptc2, and ptc3 play redundant roles in DNA double-strand break repair by homologous recombination.
In response to a DNA double-strand break (DSB), cells undergo a transient cell cycle arrest prior to mitosis until the break is repaired. In budding yeast (Saccharomyces cerevisiae), the DNA damage checkpoint is regulated by a signaling cascade of protein kinases, including Mec1 and Rad53. When DSB repair is complete, cells resume cell cycle progression (a process called "recovery") by turning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 1 6 شماره
صفحات -
تاریخ انتشار 2002